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To study the dynamics of fluid mud with a high concentration of cohesive clay 
particles, we present a theory for a thin sheet of Bingham-plastic fluid flowing slowly 
on an inclined plane. The physics is discussed on the approximate basis of the 
lubrication theory. Becsuse of the yield stress, the free surface need not be horizontal 
when the Bingham fluid is in static equilibrium, nor parallel to the plane bed when 
in steady flow. We then show that there is a variety of gravity currents that can 
advance at  a constant speed and with the same profile. Experimental confirmation 
of one type is presented. By solving a nonlinear partial differential equation, 
transient flows due either to a steady upstream discharge or to the sudden release of 
a finite fluid mass on another fluid layer are studied. In the first case there is a mud 
front which ultimately propagates as a constant speed as a steady gravity current. 
In the second case, when the ambient layer is sufficiently shallow that there is no 
initial motion, the flow induced by the new fluid can terminate after the disturbance 
has travelled a finite distance. The extent of the final spread is examined. 
Disturbances due to an external pressure travelling parallel to the free surface are 
also examined. It is found in particular that a travelling localized pulse of pressure 
gradient not only generates a localized mud disturbance which travels along with the 
forcing pressure, but further leaves behind a permanent footprint. 

1. Introduction 
It is known that some fluids such as paint, volcanic lava or water with a high 

concentration of cohesive clay particles behave approximately as Bingham plastic. 
In simple shear, the stress-strain relation is nonlinear : 

where 7@ is the yield stress and ,u the coefficient of viscosity. This is the simplest 
idealization of a shear-thinning pseudo-plastic fluid whose coefficient of viscosity 
decreases with the strain rate. In muddy water, both 7,, and ,u increase with clay 
concentration (Krone 1963 ; Migniot 1968). Because of the nonlinear relation above, 
analysis of the transient mechanics of Bingham fluids is difficult. As an example, it 
was not until recently that Phan-Thien (1983) found the exact solution to the 
Rayleigh problem for the flow induced by a suddenly imposed constant stress at the 
bottom of a half-space. Approximate numerical methods for some one-dimensional 
unsteady shear flows in an infinitely deep fluid have been developed by Makarov & 
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Sal’nikov (1973) and Makarov, Zhdanova & Plolzova (1974). But the recent survej 
by Bird, Dai & Yarusso (1983) shows a preponderance of steady flow solutions. Foi 
two dimensions the numerical method of finite elements has been developed bl 
Bercovier & Engelman (1980) for steady flows, but not yet extended to transient 
flows. A recent review of numerical methods for non-Newtonian fluids in general 
have been given by Crochet & Walters (1983) and Crochet, Davies & Walters (1984). 
Theoretical treatments of free-surface flows of a Bingham fluid, either analytical or 
numerical, are scarce in the published literature. 

On the other hand, there have been a large number of papers on free-surface flows 
of Newtonian viscous fluids, motivated by various scientific and technical reasons. 
These include the linearized instability analyses of a thin sheet down itn incline (Yih 
1954, 1963 ; Benjamin 1957), and extensions to  nonlinear instabilities (Lin 1969, 
1974). There are also nonlinear theories of gravity currents which may be regarded 
as transient long waves of finite amplitude (Batchelor 1967, p. 263; Benney 1966; 
Mei 1966). I n  particular, when the wave amplitude is comparable with the layer 
depth, the leading-order equation governing the depth is a diffusion equation with 
diffusivity proportional to  the third power of the unknown concentration. This 
approximation has been extended to axisymmetric spreading of a viscous current 
and to  two-layered fluids by Huppert (1982a, b) .  The predicted spreading rates agree 
well with the experiments by Didden & Maxworthy (1982) and by Huppert (1982 b )  
who also discussed geological applications to  the spreading of lava domes (Huppert 
1986). Mei’s (1966) study includes waves of intermediate amplitudes and the effects 
of frequency dispersion, and predicts the existence of polyclinal permanent waves. 
Similar analyses of transient free surface flows of Bingham fluids appear wanting. 

Our impetus for studying Bingham fluids is to  seek physical understanding of the 
evolution of a muddy coast. Cohesive clay particles are carried in suspension to the 
sea by river flows, and settle to the bottom upon entering the sea. By currents, tides, 
surface waves or its own weight, mud spreads along the coast and into the deeper sea. 
This spreading contributes to the transformation of muddy coasts and is a slow 
process that may take months or years. Because fluid mud is known to have strong 
nowNewtonian properties a t  high concentration (see e.g. Williams 1980 ; Verreet & 
Berlamont 1987 ; Mei & Liu 1987 and references therein), i t  is worth studying how 
this property affects mud spreading under various types of forcing. It is, however, 
useful to emphasize that our knowledge of the constitutive behaviour of 
hyperconcentrated fluid mud is far from comprehensive. Under low stress, this 
material may behave as a viscoelastic solid (McPherson 1980; Mehta & Maa 1987). 
Only under sufficiently high stress does it behave approximately as a Bingham- 
plastic fluid, with some thixotropic tendency. The viscosity and yield stress vary 
widely depending on concentration and chemical composition. For example, Migniot 
(1968) found in Provins Estuary, France, that ,u = O(10) gm/cm and T,, = O(100) 
dynes/cm2 for a concentration of 0.4 gm/cm3. I n  the Yellow River of China where 
the clay concentration can be as high as 1.5 gm/cm3, the values are much greater 
(Wang et al. 1985). Little systematic information is available on the transitional 
regime from possibly viscoelastic to Bingham-plastic behaviour. Despite the lack of 
precise details, qualitative descriptions by many observers that fluid mud a t  rest is 
like gel or yogurt suggest that under low stress, fluid mud is closer to a viscoelastic 
solid than a Newtonian fluid; the internal shear stress must exceed a certain 
threshold for permanent rate of shearing to occur. I n  SQ2-7 we examine the idealized 
model of Bingham plastic ,nd study the slow spreading of a thin fluid layer due to 
gravity or externally applied pressure. Under the assumptions that the fluid is 
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homogeneous, the flow is of the low-Reynolds-number type, the wavelength is much 
greater than the depth, and the wave amplitude is allowed to be comparable with 
depth, the approximate equation is derived. Because of the yield stress, the free 
surface can possess a rich variety of configurations either in static or dynamic 
equilibrium. The states of static equilibrium corresponding to thresholds of motion 
are first discussed ; these configurations are the final states of transient motion to be 
examined later. Several new types of steady gravity currents which can propagate a t  
a constant speed without change of form are then presented. For transient flows 
the governing equation which contains both diffusive and convective terms and is 
subject to an inequality constraint is then solved numerically. If a given mass of fluid 
is released on a layer of stationary fluid, the induced motion is shown to stop after 
the front has travelled a finite distance. This is very different from Newtonian fluids 
which can only slow down but can never stop. The final extent of spreading is 
calculated as a function of the initial volume of the released fluid mass. As a final 
example, the effect of a travelling pulse of surface pressure, which can be caused by 
a cylinder travelling slowly above a muddy sea bed, is also examined. An effect of the 
yield stress is manifested in the presence of a permanent footprint left behind by the 
moving pressure pulse. 

2. Shallow-water approximation 
Consider a single layer of fluid flowing down a plane inclined clockwise at the angle 

8 with respect to the horizon (see figure 1) .  Let the x-axis coincide with the plane bed 
and be directed downward. The free surface is designated as z = h(x, t ) .  The 
characteristic lengthscale along the bed is assumed to be so much greater than the 
fluid depth that the pressure within is hydrostatic, i.e. 

p = pg(h - z )  cos e + P ( ~ ,  t ) ,  (2.1) 

where P(x, t )  denotes the externally applied pressure, and the velocity is essentially 
in the x-direction. i.e. u $ v. Throughout the entire fluid layer the balance of 
longitudinal momentum requires 

ap a7 
ax aZ 0 = pgsin8--+--, 0 < z < h 

so that the stress increases linearly with depth, 

At the bed, z = 0, the stress is 

Clearly 1 ~ ~ 1  must exceed 7,, for fluid to move. In  particular, the fluid moves 
downward 

7 ap < --++gcose 
h ax 

Whenever 1 ~ ~ 1  < 70, or 
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FIGURE 1. A layer of fluid mud on a sloping bed. 

the mud does not move a t  all. When T~ = 7, (or -7,) the mud is at the threshold of 
downward (or upward) flow. 

When (2.5) is satisfied there is a yield surface at z = h, < h where 171 = 70. Below 
the yield surface, 0 < z < h,, there is shearing. Equation (2.2) reads 

ap a z U  
ax a22 

0 = pgsinO--+p- 

with the conditions u = o ,  z = o  

and 

It follows that 

(2.9) 

(2.10) 

Above the yield surface there is a layer of plug flow within which u = up is 
independent of z. Matching up with (2.10) a t  z = h, we get 

On the yield surface, 7 = f~,. It follows from (2.3) and (2.10) that 

7,sgnu = -(h-h,) 

(2.11) 

(2.12) 

The total volume flux at any station is clearly 

q = [oudz+up(h-k,) = hi(3h-hO). (2.13) 

Conservation of mass in the entire fluid layer requires 

ah aq -+- = 0. 
at ax 

(2.14) 

Equations (2.12), (2.13) and (2.14) are the governing equations for the three 
unknowns h(x, t )  ho(x, t )  and q(z, t ) .  
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I n  the limit of aP/dx = 0 and Newtonian fluids, h, = h ;  (2.13) and (2.14) can be 
easily combined to yield the known result (Mei 1966; Batchelor 1967; Huppert 
1982b) 

(2.15) 

As an elementary example showing a special consequence of the yield stress, a 
uniform layer with an unpressurized free surface is a t  the threshold of downward 
flow, if rb = 7,. This occurs when 

7 0  (2.16) 

from (2.5). Thus a uniform mud layer can remain stationary on an incline if 
h < h + 0, in sharp contrast to  a Newtonian fluid. 

- 
h = h = -  

pg sin 8 

We now introdice normaIized variables for the general case 

(2 ,  h, h,,H) = h(d, h‘, hh, IT), 

P 
70  

x = Lcot ex!, t = -cot ot‘, 

7 -  
q = 2 h2q’, 

P 
P = p g h P  

With (2.17) equations (2.10) and (2.13) become, with primes omitted, 

U =  ! - ( - g + l - E ) [ ; z 2 - h o z ] ,  ax 0 ~z ~ h ,  

(2.17 a )  

(2.17b) 

(2.17 c) 

(2.17d) 

(2.18) 

(2.19) 

while (2.14) is unchanged. 

(2.17) the normalized plug flow depth is 
In  the normalized variables the horizon has the slope ahlax = 1. From (2.12) and 

The region of no motion is defined from (2.6) by 

(2.20) 

(2.21) 

Note that this normalization is valid only for small slope, because the long-wave 
assumption implies 8 4 1 from (2.17b). 

Similarly to the case of a Newtonian fluid spreading on a horizontal bed (Huppert 
1982a), the equations obtained here can be applied to a fluid mud layer immersed a t  
the bottom of a shallow layer of stationary clear water of density pw with much 
smaller viscosity, if g is replaced by the reduced gravity g(p--pw)/p. A condition for 
this to  hold is that the water layer is sufficiently deep that the bottom disturbance 
cannot be felt on the free surface. This requires that the depth of water is greater 

17-2 
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than the length of waves O ( u 2 / g )  that  may otherwise be generated by a disturbance 
travelling at  the speed u. This condition is assumed from here on. The pressure P can 
be regarded as the consequence of a moving submarine or atmospheric pressure. 
Strictly speaking, such disturbances induce coupled motions in both water and mud 
layers. But as long as we restrict our interest to the physics in the mud layer, much 
can be learned by prescribing the associated pressure distribution on the water/mud 
interface. This simplified view will be adopted here. 

Lastly we give some estimates of the magnitudes involved in a typical muddy 
seabed. Take the clay concentration to be around 15% by volume. The density of 
fluid mud is then p = 1.2 g/cm3 while r0 = 30 dynes/cm2 and p = 50 g/cm s. On a 
bed of slope 8 = I", the reduced gravity is g' = 163 cm/s2, E = 8.8 cm ; the  scales of 
x, t and u are 503 cm, 95.5 s and 5.3 cm/s respectively. By using the reasoning in 
the usual lubrication theory, the pertinent Reynolds number can he shown to be: 
R, = pro k2 tan B/p2 since the characteristic velocity here is 7o k /p  and the ratio of 
transverse to longitudinal lengthscales is tanB. For the values just cited this 
Reynolds number is about 0.016, which is small enough to omit inertia, as we have 
done here. 

3. Profiles of a stationary layer on the threshold of motion 
Because of the finite yield stress, the fluid depth need not be uniform for a layer 

to be in static equilibrium. Since these non-trivial surface shapes can be related to the 
final state when the fluid comes to rest, it is useful to discuss them first. In this 
section we assume that there is no applied surface pressure ( P  = 0). 

In the special case of a horizontal bottom, the threshold profiles follow most 
directly from (2.6) with the equality sign. With P = B = 0, the surface profile is, in 

27 
physical variables : 

Pg 
h2-h: = ++x-x*), (3.1) 

where h = h, a t  x = 5,. The upper (or lower) sign corresponds to a parabolic head 
facing the left (or right). 

For any finite bed slope, we turn to the dimensionless equation (2.21) with the 
equality signs. With any disturbance mud will start to move 

(3.2) 

Therefore we refer the upper (lower) sign in (3.2) to the downward (upward) 
threshold profiles respectively. Corresponding to (2.16), h = 1 is a special solution of 
(3.2), as represented by the straight line (a) in figure 2. Consider a general downward 
threshold profile. Equation (3.2) with the upper sign can be integrated to give 

h-1 
h,-1 

h-h,+ln- = x:-x:*. (3.3) 

Now we must distinguish the two cases h, < 1 ,  or > 1 ; h, = 1 corresponds to the 
trivial limit of h = 1. For 0 < h, < 1, the depth is everywhere less than the critical 
uniform depth and approaches unity as x --f - 00, A typical profile is shown as curve 
( b )  in figure 2 for h, = 0 at  x = x, = 0, depicting the front of mud layer about to flow 
down a dry bed. The slope is infinite a t  the front x = x* - h, -In ( 1  - h,) where the 
bed is dry. A more refined theory is in principle needed for this neighbourhood but 
is not pursued here. 
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FIGURE 2. Threshold profiles on a sloping bed. Curve (a)  A uniform layer about to move down. ( b )  
The head of a uniform layer about to move down. (c) A mud sea which has just stopped sinking. 
( d )  A mud sea which has just stopped rising. 

If h, > 1 then the depth increases from h = 1 at x - - co to co a t  x - + co where 
the mud surface is horizontal. (Recall that the asymptotic slope of 1 corresponds to 
the horizon in the physical plane.) In this case the bed can be considered as the left 
bank of a large reservoir on the threshold of draining. A typical profile for h, = 2 a t  
x = x, = 0 is plotted in figure 2 as curve ( c ) .  

Similarly the upward threshold profile is given by 

l + h  
h-h,-ln- = z-x,. 

l + h ,  
(3.4 

The depth increases monotonically from 0 at z = x* - h, +In (1 + h,) to co a t  x 00 

as shown by curve ( d )  for h, = 0 at x, = 0 in figure 2. This corresponds to a mud 
reservoir a t  the threshold of rising; any disturbance would induce upward motion. 

The case of non-zero external pressure involves more physical aspects and will be 
discussed later. 

4. Permanent waves with no external pressure 
4.1. Theory 

If from t = 0 onwards fresh mud is steadily discharged a t  an upstream station of a 
slope, we expect a gravity current down the slope which finally propagates at a 
constant speed 6'. The solution near the front depends ultimately on x and t in the 
form 

where x = x-Ct. (4.2) 

This type of solution is called permanent waves in water wave theory. Mathematically 
it is the most elementary wave in a nonlinear system, just as the simple harmonic 
progressive wave is in a linear system. For a Bingham fluid the variety of such waves 
is large as we shall now discuss. 
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Equation (2.14) can be integrated a t  once to give 

q = C(h-he), 

where he 2 0 is an integration constant. 
With this and W/az = 0, (2.19) and (2.20) become 

and 
I--=-..--.- d h  sgn(u) 

dX h-h, 

(4.3) 

(4.4) 

(4.5) 

For given parameters G and he, h, can in principle be eliminated from (4.4) and (4.5) 
to give a first-order nonlinear ordinary differential equation for h : 

h , X ;  C, he, sgn (u) 

By examining various ranges of C and he, several types of permanent waves 
(gravity currents) can be found. 

Case I .  Downward propagation (C > 0) and downward flow (q > 0) 
(i) Gravity current connecting two uniform layers. The simplest kind of permanent 

wave with downward flow is a gravity current connecting a uniform depth h,,, 
upstream to another uniform depth hmin downstream. A t  each extreme, X+ & co, 
dh/dX = 0. From (4.4) and (4.5) we get 

h3-gh2 - 3C(h- he) +; = 0,  (4.7) 

h = h , + l ,  (4.8) 
for X +  & 03. In figure 3, h is plotted as a function of he for various C, in accordance 
with (4.7). For any C > 0 and 1 < he < h,* with 

1 1  

and the corresponding depth 
h* = !j[ 1 + ( 1  + 4C)a], 

(4.9a) 

(4.9b) 

(4.7) has two roots hmaX and hmin, both of which are greater than unity. By 
substituting h = h,,, and hmin in turn in (4.7) and eliminating he we find the relation 

C = S(hkax + hmax hmin + 'kin ) - t(hmax + ',in) 9 hmin 3 1 .  (4.10) 

This relation between the phase speed and the layer depths is plotted in figure 4. 
If however 0 <he < 1 ,  there is only one root of (4.7); hmaX > 1. From (4.3) 

hmin = he where q = 0. Thus q > 0 for X < 0 and q = 0 for X 2 0 and the gravity 
current propagates downward from a thicker flowing layer of depth h,, to a 
thinner stationary layer of depth hmin = he. At the moving front of the gravity 
current where q = 0, mud is liquified. From (4.7) we get 

(4.1 1 )  

Equation (4.11) is also plotted in figure 4. 
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FIGURE 3. Depth h of uniform flow as a function of C and he. -----, he = h,* and h = h* 
(cf. (4.9a, b ) ) .  
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FIGURE 4. Permanent wave speed as a function of h,,, and h,,,. 

I n  either case, once C( > 0) and he are prescribed, h,, and hmin are fixed. The 
profile h(X)  can be numerically integrated from (4.6) (or (4.4) and (4.5)). By assigning 
the initial condition that h(XJ = hi < h,,, for some convenient Xi, we can integrate 
towards X - 00 (or - m) to obtain the downstream (or upstream) part of the profile. 
A different choice of hi for a fixed Xi amounts to a shift of origin and is immaterial. 
For an initial depth close to a uniform flow h = h,,,+h,, where h, can be of either 
sign and lhll 4 h,,,, we can obtain the corresponding change in d h / d X  from (4.4) and 
(4.5). The result, to leading order, is 

%ax - hmax - Q dh - dhl x Kh,, where K = 3 
d x - d x  hkax - 1 

(4.12) 
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FIGURE 5. Surface profiles of permanent waves corresponding to C = 2.5. 
The values of he are marked. 

The depth h* given by (4.9b) is the positive root of the numerator of K .  Therefore, 
we find K > 0 for h,,, > h*, corresponding to the upper branches in figure 3. 
Consider now h, < 0, h decreases with X initially from (4.12). Once dh/dX starts to 
decrease, there are two possibilities. One is that it approaches zero; in this case a 
smaller uniform depth is approached. The other is that h goes to he (a non-moving 
mud layer) or zero (dry bed). 

In figure 5 ,  profiles AA‘, BB’B and CC are obtained for C = 2.5, Xi = 0 and 
h, = -0.01. In particular, for CC, we choose he = 1.5 and find from (4.7) that 
h,,, = 2.66 and hmin = 1.60 (see figure 3). For the same C = 2.5, but he =0.9,  
BB’B corresponds to  a gravity current with h,,, = 3.15. The downstream portion 
B’B of the wave front is a stationary mud bed of depth hmin = he = 0.9. As a special 
limit A A  is the profile for he = 0, representing a mud current advancing down a dry 
bed. 

(ii) Uniform layerjowing down into a mud sea. For prescribed C > 0 and 0 < he < 1, 
we can integrate (4.6) (or (4.4) and (4.5)) by starting from X =Xi  with an initial 
valuc h,,,+h,. However, we now choose h, > 0. According to (4.12) dh/dX > 0 and 
h increases with X a t  the start. Because there is no uniform flow solution with depth 
greater than h,,,, dh/dX cannot be zero for any other X .  Therefore, h increases with 
X monotonically.? At the limit of h +  co, dh/dX+ 1, which corresponds to a 
horizontal free surface in natural coordinates. With Xi = 0 and h, = 0.01, a sample 
profile for C = 2.5 and he = 0 is shown as AA in figure 5 which corresponds to 
h,,, = 3.56 (see figure 3) and represents the draining of mud along a sloping bank 
from a uniform layer down to a mud sea. 

4.1.2. Case I I .  Upward propagation (C < 0) 
(if Mud sea rising along a sloping uniform layer which is stationary. We now 

consider the possibility of an upward-propagating wave front and upward flow (C < 0, 
q < 0). For upward flow (sgn (u)  = - l),  there is no uniform flow from (4.5) because 
h must be greater than h,. But an upward wave can propagate on a stationary bed. 

t For this case, h,,, is just the real root of (4.7) and corresponds actually to the minimum depth 
of the whole profile. 



Spreading of Bingham $uid on an inclined plane 515 

t I I 
0 2 4 

X 
FIGURE 6. Surface profiles of permanent waves corresponding to C = -2.5. The values of he are 

marked. EE’FF is the combination of two different curves. 

In  this case h = he < 1 and q = 0 to the left of the wave front. We can then choose 
some point Xi as the head of the non-uniform layer downstream and then integrate 
(4.6) (with sgn (u) = - 1) toward X - 00. From (4.5) it is easily seen that dh/dX > 1 
always so that the depth increases monotonically. I n  figure 6 the profile DD’D is 
calculated with he = 0.9, C = -2.5 and Xi = 2. It represents the surface of a mud sea 
rising along a sloping bank on which lies a uniform layer of stationary mud. 

(ii) Mud sea rising against a downward-$owing mud layer on a sloping bank. The 
most complex permanent wave is the combination of two simple flows. On the left 
of X,(X < X,), the flow is downward (q > 0) and uniform far upstream (X - -a), 
while on the right (X > X,), the flow is upward (p < 0). At the point X = X, we must 
have h = he > 1 and q = 0. The combined profile propagates upward a t  the same 
phase speed C < 0. 

Note first that for a gravity current with C < 0, q < 0 and with a uniform depth 
hmin > 1 far upstream, we find from (4.4) and (4.5) by letting dh/dX = 0 and 
sgn (u) = 1 that  hmin satisfies (4.7). The results for hmin as a function of he are shown 
in figure 3 for C = -0.5, - 1.5 and -2.5. 

The combined profile can be calculated from (4.6) with sgn (u) = & 1 for X >< X,. 
We illustrate this by an example for he = 3 and C = -2.5. The corresponding hmin 
is found from (4.7) to be 2.33. By integrating (4.4) and (4.5) from X =  0 with 
h(0) = 2.34 until h = he = 3 we obtain the profile EE’ shown in figure 6. To the right 
of E’, sgn (u) = - 1 in (4.5). Upon integration of (4.4) and (4.5) toward X - + CO, we 
obtain the profile F’F. Therefore, the entire wave form corresponds to a mud sea 
rising against a downward flowing layer which has a uniform depth far at X - - 00. 

Finally, for a Xewtonian fluid, there can be only two types of gravity currents, 
under the present scheme of approximation. They correspond to curves CC and A A  
in figure 5 (see Mei 1966). Therefore more can exist in a Bingham-plastic fluid. These 
types, and no others, were first found by a more exhaustive examination of the phase 
portraits of the differential equation (4.6) (or (4.4) and (4.5)). 
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Mud 
reservoir u Adjustable gate 

FIQURE 7. Experimental set-up for gravity currents down a dry bed. 

4.2. Experiments on permanent waves down a dry bed 

As a partial check on our theory, we have carried out a simple experiment in the 
laboratory for one type of permanent wave which flows down an inclined dry bed (cf. 
AA' in figure 5 ) .  

The experiments were performed in a Plexiglas tank of 7.62 cm width, 15.24 cm 
height and 332 cm length as sketched in figure 7. Kaolinite is mixed with tap water 
to simulate mud. After the mixture is well stirred for 20 minutes, it  is put in a 
reservoir located high above the tilted tank and then discharged a t  a fixed rate 
through an adjustable gate. A camera is set up beside the tank 160 cm downstream 
of the gate and records the mud profile at prescribed instants of time a t  intervals 
ranging from 0.5 8 to  10 s. After 2ct30 frames the camera is relocated at another 
point further downstream and another set of photographs is taken a t  known instants 
of time. At the same time, a stop watch is also used to measure the averaged phase 
speed of mud as a check. We only analyse those photographs in which the gravity 
current has reached a steady state. 

For rheological properties, a mud sample is taken from the tank. A Brookfield LVT 
viscometer was used which has four different spindles (with radius R = 0.942, 
0.513, 0.299, 0.159 cm and length L = 6.51, 5.40, 4.29, 3.10 cm respectively) and 
eight different rotating speeds ranging from 0.3 r.p.m. to 60 r.p.m. The mud sample 
is put into a cylindrical container with inner radius 4.65 cm and depth 12 cm. For a 
prescribed rotating speed Q, the torque T is recorded a t  the steady state. 

For a strictly Bingham plastic and infinitely long spindle and container, the 
relation between T ~ ,  p, T and Q is known from Bird, Armstrong & Hassager (1987, 
p. 120) to  be 

(4.13) 2pQ = - ~ o + ~ O l n ~ O - ~ O l n - + -  

This equation holds if there is a zone of stationary fluid near the container wall. This 
should be the case here because the spindle radius is much smaller than the container 

T T 
2nLR2 2nLR2' 
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FIGURE 8. Comparison between theory and measured profiles. Curve (a) 8 = 1.47', phase speed = 
5.22 cm/s, maximum depth = 0.71 cm and k = 0.31 cm. The corresponding data points are marked 
+. ( b )  0 = 0.90°, phase speed = 9.46 cm/s, maximum depth = 1.22 cm and = 0.51 cm. The 
corresponding data points are marked x . 

xlh cot e 

radius. The measured data are then used to find 7, and p by least-square fit with 
(4.13). 

With measured 7,,,p, p and channel slope (e), we can calculate the physical scales 
and the normalized phase speed defined in (2.17) for each run. With C and he = 0 (dry 
bed), the theoretical wave profiles are obtained by integrating (4.6). The normalized 
data points for the wave profile are then plotted for comparison. 

Good agreement between theory and experiments are found for all runs. Two 
typical results are shown in figure 8 with the same concentration (p = 1.106 g/cm3) 
but different channel slopes and flow rates. From measurements we get 7,, = 
8.75 dyne/cm2 and p = 0.34 g/cm s. For curve (a) in figure 8, 0 = 1.47" and the 
corresponding Reynolds number R, ( = p7, h2 tan B/p2) is 0.21. For curve ( b ) ,  
8 = 1.01' and Re = 0.38. 

5. Finite-difference scheme for the transient solution 

convection-diffusion equation for h : 
Eliminating h, and q from (2.14), (2.19) and (2.20)) we get a nonlinear 

* h  1-- > 1 .  (5.2) ( ::) with the constraint 

Again the upper (lower) sign refers to downward (upward) flow. If (5.2) is violated, 
there is no mud motion. The constraint (5.2) guarantees the diffusivity in (5.1) to be 
positive. We have chosen the Crank-Nicholson central-difference scheme for the 
diffusion term in (5.1) and a third-order Adams-Bashforth central difference scheme 
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for the convective terms. A small artificial viscosity E is introduced to avoid 
difficulties when the local diffusivity vanishes temporarily : 

where 

In difference form the constraint (5.2) is of the form, 

(5.4) 

(5.5) 

Equation (5.3) can be written in the tridiagonal form 

 AX)^ 
-h;!;+ ( 2 + -  i:$)h:+l-hp<l = h;+1-(2-m) h: + hFVl 

(~j~-$j';-1+&f?-2), (5.6) 
 AX)^ +- 

H ;  

where Hn = - 1 { (h;)3f ( 1 -  - h;-.)-' + €} 

a - 3  2 6 2  (5.7) 

Because of ( 5 . 2 ) ,  H ;  > E always and the tridiagonal matrix is well conditioned. 
This scheme has a discretization error of O((Ax) ' ,  (A t )* )  and is stable for sufficiently 

small At lAx .  
We have tested the accuracy and stability of this scheme for two initial-value 

problems. In  the first we use (2.15) with 8 = 0 and the initial and boundary 
conditions h(x ,  0) = 6 ( x )  and h( f a, t )  + 0. This equation governs the slow spreading 
of a thin sheet of Newtonian fluid on a plane (Batchelor 1967, p. 263). The exact 
solution is known to be of the similarity type (Landau & Lifshitz 1959, p. 195). In 
the second test we start with a permanent wave of $4 and find with the full equation 
(5.1) that the wave form remains the same for all times. Excellent agreement 
between numerical calculations and these solutions are found if At /Ax  < 0.05 and 
e Q (A t ) z .  

After solving for h(x ,  t ) ,  we calculate h, from (2 .20 )  and up from (2.18) with z = he. 
In the next, sections two computed cases will be described : (1) flow due to  upstream 
supply; (2) collapse of a fluid pile released over a layer of uniform depth. 

In the first case a flux is added a t  x = 0 from t = 0 onwards. From (2 .19 )  this 
implies a nonlinear relation between h and ahlax at  x = 0. In  computations we use 
h(0, t n - l )  and q(0, t , )  to compute ahlax at  (0, t , )  which then serves as the boundary 
value. For given initial data we first check the condition (5.5) and determine the 
domain of no flow and the domains in which the flow is of one direction. Equation 
(5.6) with appropriate signs is then invoked numerically to the next time step. This 
process is repeated for all later time steps. 
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6. Transient spreading of gravity currents 
In each of the two examples to be discussed in this section, three uniform depths 

h, = 0.5, 1 ,  1.5 will be taken as the initial states before disturbances are introduced. 
From (2.19) and (4.8) the supercritical depth (h,  = 1.5) is accompanied by a uniform 
flow with the discharge: 

q, = ;(ha - l)*(h, +$). 

For critical (h, = 1 )  or subcritical (h, = 0.5) depth, the starting state is one of no 
motion. 

6.1. Flow induced by upstream supply 
At t = 0 new fluid is suddenly introduced a t  the end x = 0;  the rate of volume influx 
is kept constant a t  q = 2 for all t > 0. Surface profiles for three initial depths are 
shown in figure 9. The main conclusion is that  the front eventually approaches a 
permanent wave. The local depth h increases from h, a t  x - 00 to a finite constant 
a t  x = 0. The final upstream depth can also be found from (6.1) to be h(O,00) = 2.43. 
The wave front has zero slope in the supercritical case, and is steep in the subcritical 
case, as is depicted in figure 5.  The phase speeds of the wave front a t  large time 
t = 8 is 1.97, 1.40 and 1.03 corresponding respectively to hmin = 1.5, 1.0 and 0.5 
for the same h,,, = 2.43. These values are in excellent agreement with figure 4 
obtained from (4.10) and (4.11). The evolution of h, and up are similar and are not 
presented here. 

6.2. Collapse of a Jluid pile released over a layer of uniform depth. 

Because of its possible relevance to the slow spreading of mud on a mountain slope 
or a seabed, we study the fate of a finite mud pile added to an otherwise uniform layer 
of depth h,. We present the transient solution for an initially triangular pile, i.e. the 
initial depth distribution is 

if 1x1 > W.  
h(x,O) = 

In  the numerical example we have chosen D = 1 and W = 2. We have initially 

for the front face of the pile. The value of l / h  is minimum ( l / ( h ,  +D)) at the peak and 
maximum (l/h,) a t  the toes of the pile. We then check the value of l /h  against (2.21) 
to see whether the front will start to move. For h, = 1.8 and 1.5, the entire pile front 
will start to move downward. But for the shallowest layer (h ,  = 0.5) only a part of 
the front (0 < x < 1) will move downward at  t = 0. The back of the pile does not 
move in all three cases a t  t = 0. The time evolution of the free surface is shown in 
figure 10. For the supercritical case h, = 1.5 where the undisturbed layer is flowing, 
there is mud piling over the back face in the beginning, while the front is swept 
downward and the peak is lowered. The entire surface flattens out relatively quickly. 
For the critical case, there is no piling on the back, and the front also flattens, though 
rather slowly. In  the supercritical case where the undisturbed mud layer is a t  rest, 
the initial development is similar to  the critical case. However, after a long time 
the mud motion slows down. The front of the mud surface approaches one of the 
threshold profiles of static equilibrium corresponding to curve (b )  in figure 2 without 
complete flattening. 
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FIGURE 9. Evolution of mud surface due to a constant upstream discharge. 
( a )  h, = 1.5 (supercritical), ( b )  h,  = 1.0 (critical), (c) h, = 0.5 (subcritical). 

2.5 

h 2.0 

1.5 

1.5, 

h 1.0. 

0.57 
- 5  - 3  - 1  1 3 5 7 9 11 13 15 

X 
FIGURE 10. Collapse of a finite mud pile on a uniform layer. (a )  h ,  = 1.5 

( b )  h, = 1.0 (critical), ( e )  h, = 0.5 (subcritical). 
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FIGURE 10. Collapse of a finite mud pile on a uniform layer. (a )  h ,  = 1.5 

( b )  h, = 1.0 (critical), ( e )  h, = 0.5 (subcritical). 
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In  view of the last result, it is interesting to estimate analytically the ultimate 
dimensions of a mud pile released over a subcritical layer. This can be found by 
asserting that the final front must be a t  the threshold of static equilibrium (cf. $3) 
and by invoking mass conservation. For analytical simplicity the initial profile of 
(6.2) is again chosen, but other shapes have been found to give very similar results. 

On the back face the initial slope is D/W.  Therefore from (2 .21)  if 

D 1 
> 1 - - > - -  

h,+D W h;+D 
1 

the back face will not move initially. Subsequent spreading of the front will flatten 
the peak of the pile. The ultimate profile on the back is therefore 

On the front face, i t  must be given by (3.3): 

- w < x < 2,. 

l - h  
1-hm 

h-h,+ln- = x-x+, x, < x < x+. 

The final positions of the peak x, and of the front toe z+ are still unknown. The depth 
h, a t  x, can be found from (6.4). 

h,=h,+D 1 + -  . ( 3 
Applying (6.5) to h = h, at x, and then eliminating h, by using (6.6), we obtain a 
relation for x, and x+: 

1 - h, - D ( 1  + 5) 
(6.7) 

By mass conservation, the final volume of the pile must be equal to the initial 
volume : 

- - 2,--x+. 
l - h ,  

( h - h , ) d x + Y  (h-h,)dx. (6.8) 
Zm 

If (6.4) is used in the first integral above, and (6.5) in the second, we get 

which can be solved numerically for h,. Afterwards, x, can be calculated from (6.6) 
and x+ from (6.7). 

Variations of the final extent L = x, + W and of the final pile height h, are plotted 
in figures 11 and 12 respectively for various V and h,. Note that for a given h, a new 
mud pile will spread a t  the base only if Vexceeds a certain minimum. Otherwise there 
can be only a local flattening near the peak of the initial pile but no spreading a t  the 
base. These thresholds fall on the chain line in figure 1 1 .  On a layer with a larger h,, 
a pile with a relatively small V will spread a t  its base. The final spread L of course 
increases with V and h,. Similarly for a pile on a layer of given h, to lower its peak 
height h, and to yield a t  its base, V must also exceed a threshold, which is indicated 
by the chain line in figure 12. The final values of h, are smaller for smaller V but for 
larger h,. 
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L 

FIQURE 11. The final extent L of spreading of a mud pile as a, function of V and h,. The chain line 
gives the minimum V below which the pile base on a given h, does not spread; mud motion is 
localized near the peak. 

h,  

below which the mud pile base does not move. 
FIQURE 12. The final pile height as a function of V and A,. The chain line gives the minimum V 

7. Response to an external pressure over a horizontal layer 
As a final class of examples we consider the effects of a pressure distribution of 

prescribed strength applied externally on the surface z = h. In the case of a muddy 
seabed the pressure distribution may be caused either by a stationary submarine 
object in a water current, or an object moving above and parallel to the mud-water 
interface. 

Although we have studied the general case of & sloping layer, most of the new 
physics can be revealed by a pressure distribution over a horizontal layer. We shall 
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therefore only discuss the latter case. It is then more appropriate to replace the 
normalizations in (2.17) as follows, so that  the limit of 8 = 0 is easily taken: 

h+- 
pg cos 8 ' 

p: 
(2, W )  = -(d, W ) ,  

7; c' 
P970 

C =  

> 

where Po is the characteristic scale of the applied pressure. Eliminating h, and q from 
(2.14), (2.19) and (2.20), we obtain the dimensionless equations for h 

h, = ~ [ h 3 f ( ~ - h , - P , ) - 3 ] ( h , , + P , ~ ) + h h , [ f ~ - h ( ~ - h , - P , ) ] ,  (7.2) 

Po tan 0 

7 0  

where g=-. 

Again the primes are omitted for brevity. The flow is 

(7.3) 

We shall consider the initial conditions that 

P = 0, h = h, = constant < 1 ,  t < 0. (7.5) 

Thus the mud layer is initially stationary. 

and moves a t  a constant velocity C parallel to the mud surface, i.e. 
The gradient of the pressure is chosen to be a cosine pulse which is applied instantly 

(7.6) 
otherwise, 

which is continuous everywhere and convenient for numerical integration. The 
numerical procedure described in 55 is easily modified for the present purposes. Note 
that mud motion is forced to start by the term 

i(h3, & (1 -~,)-"P,, (7.7) 

on the right-hand side of (7.2). Because both P, and P,, are present, the mud surface 
is usually not symmetric in x even if P, is symmetric. 

In the following examples we shall only discuss the horizontal layer, so that 
8 = ~ 7 = 0 .  

7 .1 .  Stationary pressure (C = 0) 
In figure 13 the transient response to a suddenly applied, and then maintained, pulse 
of negative pressure gradient of cosine form is plotted for W = 0.5 and h, = 0.9. 
Directly under this negative pressure gradient, mud is pushed to the right. By mass 
conservation, there must be a pile on the right and a trough on the left. As can be 
expected, some mud just  outside the pressurized zone must also be moved. As t 
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FIGURE 13. Transient evolution of the surface of a horizontal mud layer due to a stationary cosine 
pulse of pressure gradient. For comparison, the dashed line corresponds to the final surface due to 
a top-hat pulse with inverse pressure gradient W l a  = 0.5. 

increases, a final equilibrium state is reached.? Note that the profile is not symmetric 
in x, unlike the pressure gradient itself. The result for a positive pressure gradient can 
be obtained from the mirror reflection of figure 13 with respect to x = 0. 

For further insight, i t  is useful to derive the final static profile analytically. The 
dimensionless governing equation is obtained from (7.4) by letting CT = 0 and 
changing the symbols from > (or <) to = if the mud is about to  move to  the right 
(or left). Unfortunately (7.6) does not permit analytical integration of (7.4). We 
therefore choose a top-hat (discontinuous) pressure gradient pulse where dP/dx is a 
negative constant - a / W  within 1x1 < W with a > W/h, .  Equation (7.4) then gives 

d h  - ~ / W + l / h ,  1x1 < W ,  ( 7 . 8 ~ )  
dx l l h ,  1x1 > w, (7.8b)  

-- ={  
With h = hmax a t  x = W, ( 7 . 8 ~ )  can be integrated to 

W - a h  U' 
a(hmax - h) - W In =--,(W-x), ( - W < x < W ) .  

W-ahmax 
(7.9) 

The resulting mud depth h is monotonic in x. Within the pressurized zone, mud is 
pushed to the right, the minimum depth must occur a t  the edge x = - W ,  so that 

(7.10) 

t Considerable computing time is needed to reach this state. 
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By gravity the mud surface adjacent to but outside the pressurized zone must also 
be deformed and assumes the rightward-facing threshold profile given by the 
dimensionless form of (31), i.e. 

( 7 . 1 1 ~ )  

(7.11 b )  

Furthermore, outside xmin < x < x,,, the mud surface is again flat so that h = h, 
and 

(7 .12a ,  b )  

Thus the only unknowns are h,,, and hmin. Invoking mass conservation we must 

h2-hkin = - Z ( X +  W ) ,  

h2-hkax = - Z ( X -  W ) ,  

xmin < x < - W ,  

W < x < x,,,. 

x,,, = W++(hk,,- h2,) ; x,in = - W-'(h2 2 w - h2 min). 

have 

(7.13) 

Substituting ( 7 . 1 l a )  in the first integral, (7.9) in the second, (7.11 b )  in the third, and 
using (7.10),  we find 

(7.14) 

Equations (7.10) and (7 .14)  can be solved for h,,, and hmin numerically as a function 
of W/a,  a and h,. The static profile is also plotted in figure 13 for comparison with 
the transient profiles due to a cosine pulse of equal total strength. There is a gross 
similarity between the results of the two pressure pulses. 

The advantage of the top hat is that (7.14) can be used to find easily the 
dependence of h,,, and hmin on the gross features of the pressure pulse a,  and W / a  
which is the reciprocal of the pressure gradient pulse. The results are plotted in figure 
14 for h, = 0.9. For the same pressure amplitude a, increasing W decreases the 
pressure gradient, hence reduces the mud deformation h,,,- hmin. For the same 
pressure gradient, or Wla,  increasing a increases the mud deformation. The values of 
x,,, and xmin can then be obtained from (7 .12a ,  b) .  Since the mud surface can be 
deformed only if W / a  < h,, it must remain flat beyond the chain line W / a  = h, in 
figure 14. Near W = 0, it can be shown that ih,  > h,,, > hmin > W/a.  While (7.9) 
indicates that the mud pile becomes a line with height no more than $hw but zero 
width, the corresponding limit of the pressure gradient is too large and thus 
invalidates our theory. 

We have compared these final-state results to the large-time values of h,,, and 
hmin in a few of the transient calculations for the negative cosine pulse and found 
them to be close, if a is taken to be unity so that the averaged pressure gradient is 
the same in both cases. 

7.2. Moving pressure 
In  figures 15 and 16, the mud evolution is plotted for C = 1 and C = - 1, respectively. 
The initial development is similar to  the case of C = 0. Since a negative pressure 
gradient pushes mud to the right, the rightward-moving pulse produces a larger pile 
than the leftward-moving pulse a t  later times. For the right-going pressure in figure 
15, the pile finally reaches a steady state. Only the back face of the pile is forced 
directly by the pressure gradient above, while the front part of the pile is unforced. 
More interestingly, a permanent trough is left behind on the left, as a consequence 
of mass conservation. For the left-going pressure in figure 16, a steady trough follows 
the moving pressure to the left, leaving a permanent pile of relatively small size on 
the right. These permanent footprints owe their existence to the Bingham yield 
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wla 
FIQURE 14. The final heights of peak (dashed curves) and trough (solid curves) of the mud surface 
as function of a and W / a  (reciprocal of dimensionless pressure gradient) for h,  = 0.9. The chain line 
represents the point W / a  = h, beyond which there is no mud motion. 

(4 “1 

I ,  
. . . . . .  

0 10 
Y X 

FIGURE 15. Transient evolution of the surface of a horizontal mud layer due to a pressure gradient 
pulse moving to the right, as shown a t  the top of each plot. C = 1 and h ,  = 0.9. (a )  t = 0.2. 
( b )  t = 1.0, (c) t = 4.0, (d )  t = 8.0. 

stress. Note that the moving trough cannot be accompanied by new piling in its 
vicinity, otherwise the volume of the pile left behind would increase without bound 
and no steady state would be possible. Again owing to  nonlinearity and the presence 
of both P, and Pz, in the governing equation, the surface profiles in figures 15 and 16 
are clearly different and asymmetric in x in both cases. If the sign of the pressure 
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X X 

FIGURE 16. Transient evolution of the surface of a horizontal mud layer due to a pressure gradient 
pulse moving to the left. C = - 1 and h, = 0.9. (a) t = 0.2, ( b )  t = 1.0, ( c )  1 = 4.0, ( d )  t = 8.0. 

gradient is reversed in both cases, the response curves are interchanged; i.e. the 
response to a negative pulse moving to the right is the mirror image of the response 
to a positive pulse moving to the left, and vice versa. 

Without further computations, the results obtained so far can be used to infer 
qualitatively the mud response beneath a wide two-dimensional cylinder which has 
a flat keel and is moving parallel to but above a horizontal mud layer immersed a t  
the sea bottom. Let the cylinder move from left to right. As 2 increases, the pressure 
below the keel first drops around the stern and then rises near the bow. Hence the 
pressure gradient is a positive pulse near the bow and a negative pulse near the stern. 
Near the bow, there would a t  first be a moving mud trough; a stationary pile is left 
behind. But the pile caused by and moving with the stern soon catches up and 
swallows the stationary pile created by the bow. A larger trough is left behind the 
stern. These features are indeed found in numerical experiments not presented here. 

The presence of either a trough or a pile left behind a moving disturbance suggests 
that the direction and the speed of an underwater object moving near a muddy sea 
bed can be estimated long after its departure. The footprint of course depends on the 
size, the shape and the speed of the object and the bed slope. In particular, an object 
creates a relatively large and long footprint if it moves down the slope. This has also 
been confirmed numerically. 

8. Summary 
Based on a shallow-water approximation similar to the theory of lubrication, a 

theory has been given for slow flows of a sheet of Bingham-plastic fluid on a plane 
bed. Static profiles with non-uniform depth are first found which correspond to 
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thresholds of incipient flow. Because of the yield stress, these profiles can exist on a 
doping bed. In  contrast, in a Newtonian fluid, the state of static equilibrium with 
finite depth is possible only when the bed is horizontal and depth constant. 
Furthermore, a variety of gravity currents are found, some of which can propagate 
up the slope and may correspond to the rise of a mud reservoir. 

For the transient start of a steady discharge of fresh mud, the front of the mud 
current is found to  reach a permanent form advancing a t  a constant wave speed. 
When a finite mass is added to a uniform layer of stationary fluid on a slope, the flow 
stops after spreading over a finite extent. The extent can be predicted by invoking 
mass conservation and requiring that the final profile corresponds to a threshold 
static equilibrium. This result is relevant to the final stage of a mud slide. Lastly, a 
moving external pressure, which may be caused by a moving body above the muddy 
sea bed, can leave a permanent footprint on the mud surface. Further studies, 
especially for two-dimensional pressure distributions, may enable one to estimate the 
size, shape and speed of a submarine object by its footprint. 

Within the framework of a Bingham-plastic model, other studies are needed. For 
example, a ship navigating a poorly dredged channel may experience large resistance 
by giving up energy to dissipation in the bottom mud. If the sea bed is covered with 
a thick layer of fluid mud, the mudlwater interface need not be horizontal when in 
static equilibrium. Consequently, internal waves may exist on an inclined interface. 
Finally, the effect of vertical variation of clay concentration may affect the viscosity 
and yield stress, hence must be important in the dynamics of fluid mud. 

The Bingham model is of course still an idealization for fluid mud which is, strictly 
speaking, a pseudo-plastic with a smooth variation between stress and strain. Certain 
predictions made here are expected to require refinement if a more accurate 
constitutive relation is given. For example, the footprint left behind a departed 
submarine object may disappear after a very long time. As clay concentration 
increases, a viscoelastic-plastic, and possibly thixotropic, model may be more 
appropriate. More theoretical and experimental work would be worthwhile. 

We thank the US Office of Naval Research, Ocean Engineering Division for 
financial support through contract No. 00014-83-K-0550, NR 294-095. Part of the 
final version was written while C.C.M. was visiting 1'Institut de Mkcanique de 
Grenoble, France. 
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